ATE5 Chapter 91 Fuel Cells & Advanced Technologies

Opening Your Class

<table>
<thead>
<tr>
<th>KEY ELEMENT</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduce Content</td>
<td>This course or class provides complete coverage of the components, operation, design, and troubleshooting. It correlates material to task lists specified by ASE and NATEF and emphasizes a problem-solving approach. Chapter features include Tech Tips, Frequently Asked Questions, Real World Fixes, Videos, Animations, and NATEF Task Sheet references.</td>
</tr>
<tr>
<td>Motivate Learners</td>
<td>Explain how the knowledge of how something works translates into the ability to use that knowledge to figure why the engine does not work correctly and how this saves diagnosis time, which translates into more money.</td>
</tr>
</tbody>
</table>
| State the learning objectives for the chapter or course you are about to cover and explain this is what they should be able to do as a result of attending this session or class. | Explain learning objectives to students as listed BELOW:
1. Explain fuel-cell technology.
2. Discuss fuel-cell vehicle systems.
3. Explain hydraulic hybrid storage systems.
4. Discuss electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). |
| Establish the Mood or Climate | Provide a WELCOME, Avoid put downs and bad jokes. |
| Complete Essentials | Restrooms, breaks, registration, tests, etc. |
| Clarify and Establish Knowledge Base | Do a round robin of the class by going around the room and having each student give their backgrounds, years of experience, family, hobbies, career goals, or anything they want to share. |

NOTE: This lesson plan is based on the 5th Edition Chapter Images found on Jim’s web site @ www.jameshalderman.com

LINK CHP 91: ATE5 Chapter Images
<table>
<thead>
<tr>
<th>Slides</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CH 91 FUEL CELLS AND ADVANCED TECHNOLOGIES</td>
</tr>
<tr>
<td>Check for ADDITIONAL VIDEOS & ANIMATIONS @ http://www.jameshalderman.com/</td>
<td></td>
</tr>
<tr>
<td>WEB SITE IS CONSTANTLY UPDATED</td>
<td></td>
</tr>
<tr>
<td>Videos</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>SLIDE 2 EXPLAIN Figure 91-1 Ford Motor Company has produced a number of demonstration fuel-cell vehicles based on the Ford Focus.</td>
</tr>
<tr>
<td>3.</td>
<td>SLIDE 3 EXPLAIN Figure 91-2 Hydrogen does not exist by itself in nature. Energy must be expended to separate it from other, more complex materials. DISCUSSION: Have the students compare and contrast operation of internal combustion engine vehicles, fuel-cell vehicles, fuel-cell hybrid vehicles, and hybrid electric vehicles. What are advantages of powering vehicles with a fuel cell? FIGURES 91-1 & 3</td>
</tr>
<tr>
<td>DISCUSSION: Have the students talk about fuel cell technology. As a fuel, how does hydrogen compare to fossil fuel? FIGURE 91-2</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>SLIDE 4 EXPLAIN Figure 91-3 The Mercedes-Benz B-Class fuel-cell car was introduced in 2005.</td>
</tr>
<tr>
<td>5.</td>
<td>SLIDE 5 EXPLAIN Figure 91-4 The Toyota FCHV is based on the Highlander platform and uses much of Toyota’s Hybrid Synergy Drive (HSD) technology in its design. DISCUSSION: Have the students discuss types of fuel cells. Which type of fuel cell is best suited to automotive applications? CHART 91-1</td>
</tr>
</tbody>
</table>
DISCUSSION: Have the students talk about the current generated by a fuel cell. Why does a fuel cell generate direct current electricity?

6. SLIDE 6 EXPLAIN Figure 91-5 polymer electrolyte membrane only allows H\(^+\) ions (protons) to pass through it. This means that electrons must follow the external circuit and pass through load to perform work.

HANDS-ON TASK: Have the students explain the PEM fuel-cell process. Have them use FIGURE 91–5 in their explanation. Grade students on their understanding of the process.

7. SLIDE 7 EXPLAIN Figure 91-6 fuel-cell stack is made up of hundreds of individual cells connected in series.

DISCUSSION: Have the students discuss fuel-cell stacks. How is the total voltage of a fuel-cell stack determined? FIGURE 91–6

8. SLIDE 8 EXPLAIN Figure 91-7 direct methanol fuel cell uses methanol/water solution for fuel instead of hydrogen.

9. SLIDE 9 EXPLAIN Figure 91-8 A direct methanol fuel cell can be refueled similar to a gasoline-powered vehicle.

DISCUSSION: Have the students talk about the way hydrogen is stored onboard a vehicle. What are the pros and cons of methanol for fuel cells? Are methanol fuel cells likely to be used in automotive applications? FIGURES 91–7 & 8

DISCUSSION: Have the students discuss fuel purity in PEM fuel cells. What happens if the hydrogen stream being fed to PEM anode is not pure? Why is this a concern for usage in vehicles?

10. SLIDE 10 EXPLAIN Figure 91-9 Powertrain layout in a Honda FCX fuel-cell vehicle. Note the use of a humidifier behind the fuel-cell stack to maintain moisture levels in the membrane electrode assemblies.

DISCUSSION: Review purpose of having moisture in contact with electrolyte membrane in a PEM fuel cell. Use FIG 91–9 to highlight humidifier used in Honda FCX fuel-cell vehicle. What is purpose of the humidifier?
The Honda FCX uses one large radiator for cooling fuel cell, and two smaller ones on either side for cooling drive train components.

DISCUSSION: Have the students discuss waste heat and low-grade heat. How do the conditions of low-grade heat affect heat transfer? How is heat generated by fuel cells dealt with in an FCHV?

FIGURE 91–10

HANDS-ON TASK: Have students explain why it is important to keep electrolyte membrane cool in a PEM fuel cell. What can be done to control its temperature? Grade students on their understanding of heat issues in PEM fuel cells.

Space is limited at the front of the Toyota FCHV engine compartment, so an auxiliary heat exchanger is located under the vehicle to help cool the fuel-cell stack.

DISCUSSION: Have the students discuss hybridization of fuel-cell vehicles. What is the purpose of an electrical storage device in a hybrid vehicle? **FIGURE 91–11**

Secondary battery in a fuel-cell hybrid vehicle is made up of many individual cells connected in series, much like a fuel-cell stack.

FIGURE 91–12 & 13

DISCUSSION: Have students talk about secondary batteries and ultracapacitors. Why are ultracapacitors suited to electric assist applications in fuel-cell hybrid vehicles? **FIG 91–12 & 13**

An ultracapacitor can be used in place of a high voltage battery in a hybrid electric vehicle. This example is from the Honda FCX fuel-cell hybrid vehicle.

DISCUSSION: Have the students discuss advantages & disadvantages of ultracapacitors in current use. What is major downside of ultracapacitors? **FIGURE 91–14**
16. SLIDE 16 EXPLAIN Figure 91-15 Drive motors in fuel-cell hybrid vehicles often use stator assemblies similar to ones found in Toyota hybrid electric vehicles. The rotor turns inside the stator and has permanent magnets on its outer circumference.

DISCUSSION: DISCUSS electric traction motors. Why is the typical drive motor used in FCHVs and HEVs so reliable? **FIGURE 91–15**

17. SLIDE 17 EXPLAIN Figure 91-16 The General Motors “Skateboard” concept uses a fuel-cell propulsion system with wheel motors at all four corners.

18. SLIDE 18 EXPLAIN Figure 91-17 The electric drive motor and transaxle assembly from a Toyota FCHV. Note the three orange cables, indicating that this motor is powered by high-voltage three-phase alternating current.

DISCUSSION: discuss transaxles used in fuel-cell hybrid vehicles. How do these transaxles compare to transmissions required for vehicles powered by internal combustion engines? **FIGURE 91–17**

19. SLIDE 19 EXPLAIN Figure 91-18 The power control unit (PCU) on a Honda FCX fuel-cell hybrid vehicle is located under the hood.

20. SLIDE 20 EXPLAIN Figure 91-19 Toyota’s FCHV uses a power control unit that directs electrical energy flow between the fuel cell, battery, and drive motor.

DISCUSSION: DISCUSS power control units (PCU) in fuel-cell hybrid vehicles. Why does an FCHV need an inverter? What are other functions of PCU? **FIGURES 91–18 & 19**

HANDS-ON TASK: Have students compare the benefits of electric motors with those of internal combustion engines. Grade students on their understanding of the operation of both electric motors and internal combustion engines as well as the comparison.

21. SLIDE 21 EXPLAIN Figure 91-20 GM fuel-cell uses compressed hydrogen in 3 high-pressure storage tanks.
22. SLIDE 22 EXPLAIN Figure 91-21 The Toyota FCHV uses high-pressure storage tanks that are rated at 350 bar. This is the equivalent of 5,000 pounds per square inch.

DISCUSSION: Have the students review and discuss regenerative braking systems. How does the electric drive motor function during regenerative braking?

23. SLIDE 23 EXPLAIN Figure 91-22 The high-pressure fitting used to refuel a fuel-cell hybrid vehicle.

24. SLIDE 24 EXPLAIN Figure 91-23 Note that high-pressure hydrogen storage tanks must be replaced in 2020

DISCUSSION: Have students discuss how compressed hydrogen gas is stored & how tanks are rated. How does use of multiple small storage tanks further reduce hydrogen storage capacity on fuel-cell HEVS? **FIGURES 91–20 & 21**

25. SLIDE 25 EXPLAIN Figure 91-24 GM’s Hydrogen3 has a range of 249 miles when using liquid hydrogen.

26. SLIDE 26 EXPLAIN Figure 91-25 Refueling a vehicle with liquid hydrogen

27. SLIDE 27 EXPLAIN FIGURE 91-26 Carbon deposits, such as these, are created by incomplete combustion of a hydrocarbon fuel

DISCUSSION: Have the students discuss liquid hydrogen and its properties and requirements. How does energy content of liquid hydrogen compare to that of gasoline? **FIGURE 91-24 & 25**

DISCUSSION: Have students review hydrogen gas, liquid hydrogen, & solid storage of hydrogen. What advantages as a fuel does hydrogen have over hydrocarbons? **FIGURE 91-24 & 25**
Both diesel and conventional gasoline engines create exhaust emissions due to high peak temperatures created in the combustion chamber. The lower combustion temperatures during HCCI operation result in high efficiency with reduced emissions.

DISCUSSION: Have the students talk about the homogeneous charge compression ignition process. Have them use FIGURE 91–27 to compare HCCI system to diesel and gasoline engines. What are the current downsides to the HCCI system?

A typical electric vehicle charging station on the campus of a college in southern California.

DISCUSSION: Have the students discuss plug-in hybrid electric vehicles. What is the main advantage of PHEVs? How can these plug-in hybrids achieve zero emissions? FIGURE 98–28

DISCUSSION: Have the students talk about the factors affecting the future of electric vehicles. How is the rising cost of fossil fuels affecting consumers’ ability to continue with ICE vehicles? How might this factor spur the development of EVs?

A conductive-type charging connector. This type of battery charging connector is sometimes called an AVCON connector, named for the manufacturer.

An inductive-type electric vehicle battery charger connector. This type of connector fits into a charging slot in the vehicle, but does not make electrical contact.

DISCUSSION: Have the students discuss weather concerns for electric vehicles. How do both cold and hot weather affect electrical power needs for electric vehicles?

DISCUSSION: Have the students talk about electric vehicle range, charging, & recharging. What are factors that affect EVs’ range? How has California addressed range of EVs?
FIGURE 91-30

ON-VEHICLE NATEF TASK (A6-B-7)

Electric/Fuel Cell Vehicle Identification:
Identify high-voltage circuits of electric vehicles and related safety precautions. *(P-3) Page 283*

32. SLIDE 32 EXPLAIN Figure 91-31 Hoover Dam in Nevada/Arizona is used to create electricity for use in southwest US

33. SLIDE 33 EXPLAIN Figure 91-32 Wind power capacity by area

34. SLIDE 34 EXPLAIN Figure 91-33 typical wind generator that is used to generate electricity

DISCUSSION: Have the students discuss wind power. How is electricity generated from wind power? What are its advantages? Why can’t wind farms be placed in more locations?

35. SLIDE 35 EXPLAIN Figure 91-34 The Hoover Dam in Nevada/Arizona is used to create electricity for use in the southwest United States

DISCUSSION: Have the students talk about hydroelectric power. How is hydroelectric power generated? What is the advantage of hydroelectric power over wind power?

DISCUSSION: Have the students discuss drag racing for electric-powered vehicles. How is power of the electric powered vehicles increased? What are NEDRA’s reasons for promoting electric drag racing? **FIGURE 91-31**

Crossword Puzzle (Microsoft Word) (PDF)
Word Search Puzzle (Microsoft Word) (PDF)