FIGURE 22.1 A technician-made fused jumper lead, which is equipped with a red 10 ampere fuse. This fused jumper wire uses terminals for testing circuits at a connector instead of alligator clips.

FIGURE 22.2 A 12-volt test light is attached to a good ground while probing for power.
FIGURE 22.3 A test light can be used to locate an open in a circuit. Note that the test light is grounded at a different location than the circuit itself.

FIGURE 22.4 Typical digital multimeter. The black meter lead is always placed in the COM terminal. The red meter test lead should be in the volt–ohm terminal except when measuring current in amperes.

FIGURE 22.5 Typical digital multimeter (DMM) set to read DC volts.
FIGURE 22.6 A typical auto-ranging digital multimeter automatically selects the proper scale to read the voltage being tested. The scale selected is usually displayed on the meter face. (a) Note that the display indicates “4,” meaning the meter can read up to 4 volts. (b) This range is now set to the 40 volt scale, meaning the meter can read up to 40 volts on the scale. Any reading above this level will cause the meter to reset to a higher scale. If not set on auto-ranging, the meter display would indicate OL if a reading exceeds the limit of the scale selected.

FIGURE 22.7 Using a digital multimeter set to read ohms (Ω) to test this light bulb. The meter reads the resistance of the filament.

FIGURE 22.8 Many digital multimeters can have the display indicate zero to compensate for test lead resistance. (1) Connect leads in the V, Ω, and COM meter terminals. (2) Select the Ω scale. (3) Touch the two meter leads together. (4) Push the “zero” or “readjust” button on the meter. (5) The meter display will now indicate zero ohms of resistance.
FIGURE 22.9 Measuring the current flow required by a horn requires that the ammeter be connected to the circuit in series and the horn button be depressed by an assistant.

FIGURE 22.10 Note the blade-type fuse holder soldered in series with one of the meter leads. A 10 ampere fuse helps protect the internal meter fuse (if equipped) and the meter itself from damage that may result from excessive current flow if accidentally used incorrectly.

FIGURE 22.11 An inductive ammeter clamp is used with all starting and charging testers to measure the current flow through the battery cables.
FIGURE 22.12 A typical mini clamp-on-type digital multimeter. This meter is capable of measuring alternating current (AC) and direct current (DC) without requiring that the circuit be disconnected to install the meter in series. The jaws are simply placed over the wire and current flow through the circuit is displayed.

FIGURE 22.13 Typical digital multimeter showing OL (over limit) on the readout with the ohms (Ω) unit selected. This usually means that the unit being measured is open (infinity resistance) and has no continuity.