Introduction to Automotive Service

Chapter 1 Automotive Background & Overview

Opening Your Class

<table>
<thead>
<tr>
<th>KEY ELEMENT</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduce Content</td>
<td>This course or class serves as an introduction to the world of automotive service. It correlates material to task lists specified by ASE and NATEF.</td>
</tr>
<tr>
<td>Motivate Learners</td>
<td>Explain how the knowledge of how something works translates into the ability to use that knowledge to figure why the engine does not work correctly and how this saves diagnosis time, which translates into more money.</td>
</tr>
<tr>
<td>State the learning objectives</td>
<td>Explain the chapter learning objectives to the students.</td>
</tr>
<tr>
<td>for the chapter or course you</td>
<td>1. Explain the evolution of the automobile.</td>
</tr>
<tr>
<td>are about to cover and explain</td>
<td>2. Discuss the major components of a vehicle.</td>
</tr>
<tr>
<td>this is what they should be</td>
<td>3. Describe the evolution of engines.</td>
</tr>
<tr>
<td>able to do as a result of</td>
<td>4. List the common components of most vehicles.</td>
</tr>
<tr>
<td>attending this session or class.</td>
<td>5. List the eight areas of automotive service according to ASE/NATEF.</td>
</tr>
<tr>
<td>Establish the Mood or Climate</td>
<td>Provide a WELCOME, Avoid put downs and bad jokes.</td>
</tr>
<tr>
<td>Complete Essentials</td>
<td>Restrooms, breaks, registration, tests, etc.</td>
</tr>
<tr>
<td>Clarify and Establish Knowledge</td>
<td>Do a round robin of the class by going around the room and having each student give their backgrounds, years of experience, family, hobbies, career goals, or anything they want to share.</td>
</tr>
</tbody>
</table>
1. SLIDE 1 HEADER

2. SLIDES 2-9: Read & Describe Automotive Milestones

Check for ADDITIONAL VIDEOS & ANIMATIONS @ http://www.jameshalderman.com/
WEB SITE IS CONSTANTLY UPDATED

10. SLIDE 10 EXPLAIN FIGURE 1–1 shows Ford
Quadricycle built by Henry Ford.

11. SLIDE 11 EXPLAIN FIGURE 1–2 vehicle bodies were constructed with wood framework until 1920s. Early Motor Vehicles Evolved from horse-drawn carriages. Engine and power train attached To modified carriage leading to term “Horseless Carriage”

Karl Benz built first actual car in 1885. Regarded as inventor of gasoline-powered car. 1st automobile entirely designed as such to generate its own power, not simply a motorized stage coach or horse carriage

12. SLIDE 12 EXPLAIN FIGURE 1–3 chassis of 1950s era vehicle showing engine, drivetrain, frame, and suspension.

SHOW VIDEO FROM MYAUTOMOTIVELAB.COM
WELCOME TO AUTOMOTIVE INDUSTRY VIDEO
http://media.pearsoncmg.com/ph/chet/chet_mylabs/akamai/template/video640x480.php?title=Welcome&clip=pandc/chet/2012/automotive/Auto_Parts_Specialist/P2_Welcome.mov&caption=chet/chet_mylabs/akamai/2012/automotive/Auto_Parts_Specialist/xml/P2_Welcome.xml

13. SLIDE 13 walk through & EXPLAIN body terms on FIGURE 1–4

SHOW ANIMATION: BODY TERMS
HAVE A TEAM DISCUSSION ON BODY PARTS:
MATCHES SLIDE 13 FIGURE 1–4
http://media.pearsoncmg.com/ph/chet/chet_myautomotivelab_2/animations/A0_ANIMATION/CHAPTER1_FIG_1_4/INDEX.HTM
HANDS-ON TASK: Break Students Into 2 Teams. Use Masking Tape To ID Car Body Terms On Lab Vehicle Like Those In Slide 33. Write Name Of Part On Tape & Place It Next To Part. Use Vocabulary Scavenger Hunt Task Sheet to identify parts on vehicle related to charging system that correspond with letter on task sheet & describe purpose of each part.

14. **SLIDE 14** Explain that body construction

Many expensive automakers in 1920s & 1930s had bodies built by another company. Eventually, most bodies were constructed of steel and many without the need for a frame to support drivetrain and suspension.

15. **SLIDE 15 EXPLAIN FIGURE 1-5** Note ribbing and the many different pieces of sheet metal used in the construction of this body.

16. **SLIDE 16 EXPLAIN FIGURE 1-6:** Corvette without a body. Notice that the vehicle is complete enough to be driven. This photo was taken at the Corvette Museum in Bowling Green, Kentucky.

17. **SLIDE 17 Read Slide Text:** Explain that all Gasoline & Diesel Engines are called Internal Combustion Engines (ICE) and designed to compress an ignitable mixture. Mixture of gasoline and air is ignited using a spark for a Gasoline fueled engines. Diesel fueled engines use spontaneous combustion where a mixture of diesel fuel and air is ignited using heat of compression.

18. **SLIDE 18 READ FIGURE 1–7 Ford flathead V-8 engine.** This engine design was used by Ford Motor Company from 1932 through 1953. In a flathead design, valves located next to cylinders.

19. **SLIDE 19 EXPLAIN FIGURE 1-8 A Monroney label as shown on the side window of a new vehicle.**

20. **SLIDE 20 to 22 Read & EXPLAIN Slide Text**
<table>
<thead>
<tr>
<th>ICONS</th>
<th>Ch01 Automotive Background & Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEMONSTRATION: IGNITION COMPONENTS & OPERATION. USE A SIMULATOR OR AN OLD DISTRIBUTOR, COIL AND ST125</td>
</tr>
<tr>
<td></td>
<td>HANDS-ON TASK: USE VOCABULARY SCAVENGER HUNT TASK SHEET to identify parts on vehicle related to emission control system that correspond with letter on task sheet & describe purpose of each part.</td>
</tr>
<tr>
<td></td>
<td>DISCUSSION: DISCuss differences between RWD & FWD POWERTRAINS. WHAT ADVANTAGES AND DISADVANTAGES OF EACH?</td>
</tr>
<tr>
<td></td>
<td>OPTIONAL DEMO: Show Students Universal Joints & Describe Their Purpose. Show students some different types of CV Joints used on FWD vehicles.</td>
</tr>
</tbody>
</table>

23. SLIDE 23 Read FIGURE 1–9 CAPTION dash control panel used by driver to control FWD system.

24. SLIDE 24 Read & Discuss SLIDE text

25. SLIDE 25 EXPLAIN FIGURE 1–10 Alternator is heart of electrical system

26. SLIDE 26 Read & Discuss SLIDE text

Early Vehicles did not have electrical system & used magneto to create a spark. First components were battery-powered lights. Only after 1912 did the self-starter & battery become commonplace. *Charles F. Kettering* (at DELCO, Dayton Electronic Laboratory Company) also invented point-type ignition system Early Batteries called SLI batteries (Starting, Lighting, Ignition)

OPTIONAL DEMO: IF YOU HAVE A SIMULATOR DEMO ALTERNATOR OPERATION. HOOK-UP AVR/CAB TESTER & DEMO ON VEHICLE. HAVE THIS SET-UP BEFORE CLASS.
The National Institute for Automotive Service Excellence (NIASE), now using the abbreviated acronym ASE (Automotive Service Excellence) created the 8 automotive certifications tests. You can link to www.ase.com for more information on ASE and over 45 different auto, truck, & bus exams they offer. Test registration booklet that includes details on all vehicle-related certification tests given by ASE.

27. SLIDE 27 EXPLAIN ASE/NATEF Repair Areas
 - Engine repair (A1) www.ase.com
 - Automatic transmission (A2) www.ase.com
 - Manual drive train and axles (A3) www.ase.com
 - Suspension and steering (A4) www.ase.com
 - Brakes (A5) www.ase.com
 - Electrical/electronic systems (A6) www.ase.com
 - Heating and air conditioning (A7) www.ase.com
 - Engine Performance (A8) www.ase.com

28. SLIDE 28 EXPLAIN FIGURE 1.11 Test registration booklet that includes details on all vehicle-related certification tests given by ASE

HOMEWORK: CHAPTER 1 CROSSWORD PUZZLE: