Figure 46.1: The tire-pressure placard (sticker) on the driver's side door or door jamb indicates the specified tire pressure.

<table>
<thead>
<tr>
<th>CHART 46.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire-Pressure Monitoring Systems</td>
</tr>
</tbody>
</table>
FIGURE 46.2 A tire with low inflation will have a shorter distance traveled per revolution than a tire that is properly inflated. The center of the wheel and the road will therefore rotate faster than a tire that is properly inflated.

FIGURE 46.3 The speeds of the diagonally opposed wheels are added together and then compared to the other two wheels to check if one tire is rotating faster.

FIGURE 46.4 The indirect tire-pressure monitoring system has a reset switch that should be depressed after rotating or replacing tires.
FIGURE 46.5 A clear plastic valve stem tire-pressure monitoring sensor, showing the round battery on the right and the electronic sensor and transistor circuits on the left.

FIGURE 46.6 A conventional valve stem on the right compared with a TIPS sensor stem on the left. Notice the taper and larger brass stem. The TIPS TIPS sensor valve uses a longer valve that allows it to work as a sensor to spot that this is a nonconventional rubber valve stem.
FIGURE 46.7 The three types of TPMS sensors most commonly found include the two stem-mounted (rubber and aluminum, left and top) and the banded sensors (right).

FIGURE 46.8 A typical tire-pressure monitoring system tester. The unit should be held near the tire. For a valve-stem type sensor, separate the valve stem in equipped with a wheel-mounted sensor, or place the valve stem in a tire equipped with a valve-stem type sensor.

FIGURE 46.9 Some vehicles display the actual measured tire pressure for each tire on the driver information display.
FIGURE 46.10 A tire-pressure warning light can vary depending on the vehicle, but includes a tire symbol.

FIGURE 46.11 The parts of a typical stem-mounted TPMS sensor. Notice the small hole used to monitor the inflation pressure. The use of stop-leak can easily clog this small hole.

FIGURE 46.12 When replacing a TPMS sensor, be sure to record the sensor ID because this needs to be entered into the system through the use of a tester or scan tool.
FIGURE 46.13 A magnet is placed around the valve stem to reprogram some stem-mounted tire-pressure sensors.

FIGURE 46.14 Always use an accurate, known-good tire pressure gauge. Digital gauges are usually more accurate than mechanical gauges.

FIGURE 46.15 A clicker-type valve core tool ensures that the valve core is tightened to factory specifications.
FIGURE 46.16 An assortment of service parts that include all of the pieces needed for service of either an inclosed TPMS sensor being replaceable or removal for tire replacement or repair.