FIGURE 60.1 Typical parking brake cable system, showing the foot-operated parking brake lever and cable routing.

FIGURE 60.2 A typical parking brake pedal assembly.
FIGURE 60.3 Typical hand-operated parking brake. Note that the adjustment for the cable is under the vehicle at the equalizer.

FIGURE 60.4 A ratchet mechanism is used to lock parking brakes in the applied position.

FIGURE 60.5 A remotely mounted parking brake release lever.
FIGURE 60.6 Automatic parking brake release mechanisms usually use a vacuum servo to operate the release lever.

FIGURE 60.7 The two plastic vacuum tubes on the steering column are used to release the parking brake when the gear selector is moved from park into a drive gear.

FIGURE 60.8 The cable from the actuating arm to the equalizer is commonly called the control cable. From the equalizer, the individual brake cables are often called application cables. These individual cables can usually be purchased separately.
FIGURE 60.9 Notice how rust inside the covering of this parking brake cable has caused the cable to swell.

FIGURE 60.10 Intermediate levers in the parking brake linkage increase the application force.

FIGURE 60.11 A cable guide is a common type of parking brake linkage equalizer.
FIGURE 60.12 Some parking brake equalizers are installed in the brake cable.

FIGURE 60.13 Many parking brake linkages use both an intermediate lever and an equalizer.

FIGURE 60.14 Notice the spring at the end of the parking brake strut. This antirattle spring keeps tension on the strut. The parking brake lever is usually attached with a pin and spring (wavy) washer and retained by a horseshoe clip.
FIGURE 60.15 The parking brake cable pulls on the parking brake lever, which in turn forces the brake shoe against the drum.

FIGURE 60.16 The inside "face" of the disc brake rotor is the friction surface for the parking brake shoes.

FIGURE 60.17 A typical rear disc brake auxiliary drum brake friction assembly.
FIGURE 60.18 A Ford rear brake caliper ball and ramp type apply mechanism.

FIGURE 60.19 Operation of a ball and ramp type rear disc brake caliper parking brake.

FIGURE 60.20 Automatic adjustment of a ball and ramp type rear disc brake caliper parking brake occurs when the service brakes are applied.
FIGURE 60.21 A typical General Motors rear disc brake with an integral parking brake. This type uses a screw, nut, and cone mechanism to apply the caliper piston.

FIGURE 60.22 Parking brake application of a General Motors rear drive brake caliper.

FIGURE 60.23 Automatic adjustment of a General Motors rear disc brake caliper.
FIGURE 60.24 To adjust the parking brake cable on a Ford vehicle equipped with rear disc brakes, start by loosening the cable adjustment until the cables to the calipers are slack. Tighten until the caliper lever moves. Position a 1/4 inch drill bit or dowel into the caliper alignment hole. Adjustment is correct if the parking brake lever does not hit the 1/4 inch dowel.

FIGURE 60.25 After checking that the rear brakes are okay and properly adjusted, the parking brake cable can be adjusted. Always follow the manufacturer’s recommended procedure.

FIGURE 60.26 Many hand-operated parking brakes are adjusted inside the vehicle.
FIGURE 60.27 Always check that the brake shoes contact the anchor pin.

FIGURE 60.28 A 1/8 inch (3 mm) drill bit is placed through an access hole in the backing plate to adjust the leading/trailing rear parking brake. Adjust the parking brake cable until the drill can just fit between the shoe web and the parking brake lever.

FIGURE 60.29 Many parking brake cables can be removed easily from the backing plate using a 1/2 inch (13 mm) box-end wrench. The wrench fits over the retainer finger on the end of the parking brake cable.
FIGURE 60.30 An electric parking brake button on the center console of a Jaguar.