Opening Your Class

<table>
<thead>
<tr>
<th>KEY ELEMENT</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduce Content</td>
<td>This course or class covers Automotive Maintenance and Light Repair. It correlates material to task lists specified by ASE and NATEF.</td>
</tr>
<tr>
<td>Motivate Learners</td>
<td>Explain how the knowledge of how something works translates into the ability to use that knowledge to figure why the engine does not work correctly and how this saves diagnosis time, which translates into more money.</td>
</tr>
</tbody>
</table>
| **State the learning objectives for the chapter or course you are about to cover and explain this is what they should be able to do as a result of attending this session or class.** | Explain the chapter learning objectives to the students.
- Explain the evolution of the automobile.
- Discuss the major components of a vehicle.
- Describe the evolution of engines.
- List the common components of most vehicles.
- List the eight areas of automotive service according to ASE/NATEF. |
| **Establish the Mood or Climate** | Provide a WELCOME, Avoid put downs and bad jokes. |
| **Complete Essentials** | Restrooms, breaks, registration, tests, etc. |
| **Clarify and Establish Knowledge Base** | Do a round robin of the class by going around the room and having each student give their backgrounds, years of experience, family, hobbies, career goals, or anything they want to share. |
1. SLIDE 1 CH01 Automotive Background and Overview

2. SLIDES 2 EXPLAIN OBJECTIVES

Check for ADDITIONAL VIDEOS & ANIMATIONS @ http://www.jameshalderman.com/

WEB SITE REGULARLY UPDATED

3. SLIDES 3-9 Read & Describe Historical Background

10. SLIDES 10-11 Read & Describe BODIES

12. SLIDE 12 EXPLAIN CHASSIS SYSTEMS OVERVIEW

Check for ADDITIONAL VIDEOS & ANIMATIONS @ http://www.jameshalderman.com/

WEB SITE IS CONSTANTLY UPDATED

13. SLIDE 13 EXPLAIN FIGURE 1–1 shows Ford Quadricycle built by Henry Ford.

14. SLIDE 14 EXPLAIN FIGURE 1–2 vehicle bodies were constructed with wood framework until 1920s. Early Motor Vehicles Evolved from horse-drawn carriages. Engine and power train attached To modified carriage leading to term “Horseless Carriage” Karl Benz built first actual car in 1885. Regarded as inventor of gasoline-powered car. 1st automobile entirely designed as such to generate its own power, not simply a motorized stage coach or horse carriage

SHOW VIDEO FROM MYAUTOMOTIVELAB.COM

WELCOME TO AUTOMOTIVE INDUSTRY VIDEO

15. SLIDE 15 EXPLAIN FIGURE 1–3 chassis of 1950s era vehicle showing engine, drivetrain, frame, and suspension.

16. SLIDE 16 EXPLAIN FIGURE 1–4 Body and terms.
Many expensive automakers in 1920s & 1930s had bodies built by another company. Eventually, most bodies were constructed of steel and many without the need for a frame to support drivetrain and suspension.

17. SLIDE 17 EXPLAIN FRAMES

18. SLIDE 18 EXPLAIN FIGURE 1–5 Note ribbing and the many different pieces of sheet metal used in the construction of this body.

19. SLIDE 19 EXPLAIN FIGURE 1-6: Corvette without a body. Notice that the vehicle is complete enough to be driven. This photo was taken at the Corvette Museum in Bowling Green, Kentucky.

20. SLIDE 20 EXPLAIN Engine Design Evolution.

21. SLIDE 21 READ FIGURE 1–7 Ford flathead V-8 engine. This engine design was used by Ford Motor Company from 1932 through 1953. In a flathead design, valves located next to cylinders.

22. SLIDE 22 EXPLAIN FIGURE 1-8 A Monroney label as shown on the side window of a new vehicle.

23. SLIDES 23-24 EXPLAIN ENGINE SYSTEMS OVERVIEW

25. SLIDE 25 EXPLAIN POWERTRAIN OVERVIEW
DEMONSTRATION: Ignition Components & Operation. Use a simulator or an old distributor, coil and ST125

HANDS-ON TASK: Use vocabulary scavenger hunt task sheet to identify parts on vehicle related to emission control system that correspond with letter on task sheet & describe purpose of each part.

DISCUSSION: Discuss differences between RWD & FWD powertrains. What advantages and disadvantages of each?

OPTIONAL DEMO: Show students universal joints & describe their purpose. Show students some different types of CV joints used on FWD vehicles.

26. Slide 26 Explain Figure 1–9 Caption dash control panel used by driver to control FWD system.

27. Slides 27-28 Read & Discuss Electrical/Electronic Systems Overview

29. Slide 29 Explain Figure 1–10 Alternator is heart of electrical system

30. Slide 30 Read & Discuss Heating, Ventilation, & Air Conditioning Overview

Early Vehicles did not have electrical system & used magneto to create a spark. First components were battery-powered lights. Only after 1912 did the self-starter & battery become commonplace. ü Charles F. Kettering (at DELCO, Dayton Electronic Laboratory Company) also invented point-type ignition system Early Batteries called SLI batteries (Starting, Lighting, Ignition)

OPTIONAL DEMO: If you have a simulator demo alternator operation. Hook-up AVR/CAB tester & demo on vehicle. Have this set-up before class.
The National Institute for Automotive Service Excellence (NIASE), now using the abbreviated acronym ASE (Automotive Service Excellence) created the 8 automotive certifications tests. You can link to www.ase.com for more information on ASE and over 45 different auto, truck, & bus exams they offer. Test registration booklet that includes details on all vehicle-related certification tests given by ASE.

31. SLIDES 31-32 EXPLAIN ASE/NATEF Repair Areas
 - Engine repair (A1) www.ase.com
 - Automatic transmission (A2) www.ase.com
 - Manual drive train and axles (A3) www.ase.com
 - Suspension and steering (A4) www.ase.com
 - Brakes (A5) www.ase.com
 - Electrical/electronic systems (A6) www.ase.com
 - Heating and air conditioning (A7) www.ase.com
 - Engine Performance (A8) www.ase.com

33. SLIDE 33 EXPLAIN FIGURE 1.11 Test registration booklet that includes details on all vehicle-related certification tests given by ASE