Automotive Maintenance and Light Repair, 1ST Edition
Chapter 25 Series, Parallel, and Series Parallel Circuits

Opening Your Class

<table>
<thead>
<tr>
<th>KEY ELEMENT</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduce Content</td>
<td>This course or class covers \textit{Automotive Maintenance and Light Repair}. It correlates material to task lists specified by ASE and NATEF.</td>
</tr>
<tr>
<td>Motivate Learners</td>
<td>Explain how the knowledge of how something works translates into the ability to use that knowledge to figure why the engine does not work correctly and how this saves diagnosis time, which translates into more money.</td>
</tr>
</tbody>
</table>
| State the learning objectives for the chapter or course you are about to cover and explain this is what they should be able to do as a result of attending this session or class. | Explain the chapter learning objectives to the students.
- Prepare for ASE Electrical/Electronic Systems (A6) certification test content area “A” (General Electrical/Electronic System Diagnosis).
- Identify a series circuit.
- Identify a parallel circuit.
- Identify a series-parallel circuit.
- Calculate the total resistance in a parallel circuit.
- State Kirchhoff’s voltage law.
- Calculate voltage drops in a series circuit.
- Explain series and parallel circuit laws.
- State Kirchhoff’s current law.
- Identify where faults in a series-parallel circuit can be detected or determined. |
| Establish the Mood or Climate | Provide a WELCOME, Avoid put downs and bad jokes. |
| Complete Essentials | Restrooms, breaks, registration, tests, etc. |
| Clarify and Establish Knowledge Base | Do a round robin of the class by going around the room and having each student give their backgrounds, years of experience, family, hobbies, career goals, or anything they want to share. |
Ch25 Series, Parallel, Series Parallel Circuits

1. SLIDE 1 CH25 Series, Parallel, and Series Parallel Circuits

2. SLIDES 2-4 EXPLAIN OBJECTIVES

Check for ADDITIONAL VIDEOS & ANIMATIONS @ http://www.jameshalderman.com/

WEB SITE REGULARLY UPDATED

5. SLIDE 5 EXPLAIN SERIES CIRCUITS

6. SLIDES 6-7 EXPLAIN Ohm’s Law and Series Circuits

8. SLIDE 8 EXPLAIN Figure 25-1 Series circuit with 3 bulbs. All current flows through all resistances (bulbs). Total resistance of circuit is sum of total resistance of bulbs, & bulbs will light dimly because of increased resistance & reduction of current flow (amperes) through circuit.

DEMONSTRATION: SET-UP CIRCUIT IN FIGURE 25-1 & SHOW STUDENTS HOW TO USE

DISCUSSION: DISCUSS SERIES CIRCUITS. WHERE, AND FOR WHAT PURPOSE, ARE SERIES CIRCUITS USED? REVIEW OHM’S LAW FOR USE IN UNDERSTANDING SERIES CIRCUITS. WHY IS TOTAL RESISTANCE SUM OF ALL RESISTANCES?

9. SLIDE 9 EXPLAIN Figure 25-2 series circuit with 2 bulbs.

10. SLIDE 10 EXPLAIN KIRCHHOFF’S VOLTAGE LAW

11. SLIDE 11 EXPLAIN Figure 25-3 As current flows through a circuit, voltage drops in proportion to amount of resistance in circuit. Most, if not all, of resistance should occur across load such as bulb in circuit. All of other components & wiring should produce little, if any, voltage drop. If a wire or connection did cause a voltage drop, less voltage would be available to light bulb and bulb would be dimmer than normal.

12. SLIDE 12 EXPLAIN Figure 25-4 In a series circuit voltage is dropped or lowered by each resistance in the circuit. Higher resistance, greater drop in voltage.
13. SLIDE 13 EXPLAIN Figure 3-5 Voltmeter reads differences of voltage between test leads. Voltage read across a resistance is the voltage drop that occurs when current flows through a resistance. A voltage drop is also called an “IR” drop because it is calculated by multiplying the current (I) through the resistance (electrical load) by the value of the resistance (R).

14. SLIDE 14 EXPLAIN Kirchhoff’s Voltage Law

KIRCHHOFF’S VOLTAGE LAW: 2ND LAW:
VOLTAGE AROUND ANY CLOSED CIRCUIT IS EQUAL TO THE SUM (TOTAL) OF THE VOLTAGE DROPS ACROSS THE RESISTANCES

DISCUSSION: HAVE STUDENTS DISCUSS KIRCHHOFF’S SECOND VOLTAGE LAW. HOW DOES KIRCHHOFF’S LAW RELATE TO OHM’S LAW?

15. SLIDE 15 EXPLAIN: SERIES CIRCUIT LAWS
16. SLIDE 16 EXPLAIN Figure 25-6 In this series circuit with a 2-ohm resistor and a 4-ohm resistor, current (2 amperes) is same throughout even though voltage drops across each resistor.

17. SLIDE 17 EXPLAIN Figure 25-7 Example 1.
18. SLIDE 18 EXPLAIN Figure 25-8 Example 2.
19. SLIDE 19 EXPLAIN Figure 25-9 Example 3.
20. SLIDE 20 EXPLAIN Figure 25-10 Example 4.

COMPLETE SERIES CIRCUIT WORKSHEETS 1, 2, & 3
TASK SHEET ON ELECTRICAL CIRCUITS

TASK: HAVE STUDENTS DO EXPERIMENTS ON SERIES CIRCUITS: CONSTRUCT A CIRCUIT SIMILAR TO ONE IN FIGURE 25–4. SHOW STUDENTS HOW TO CHECK VOLTAGE DROP AT EACH LAMP. ASK THEM TO ADD UP VOLTAGE DROPS & COMPARE THEM TO SOURCE VOLTAGE.
TASK: STUDENTS DO EXPERIMENTS ON SERIES CIRCUITS CONSTRUCT A CIRCUIT SIMILAR TO ONE IN FIGURE 25–8, FIGURE 25–9, & FIGURE 25–10. WHY DOES CURRENT REMAIN CONSTANT, EVEN THOUGH THERE ARE DIFFERENT RESISTANCES?
HOMEWORK: SEARCH INTERNET:: RESEARCH 2 OR MORE APPLICATIONS OF SERIES CIRCUITS. ASK THEM TO DRAW CONCLUSIONS ABOUT SETTINGS IN WHICH SERIES CIRCUITS ARE USED & WHY ANOTHER TYPE OF CIRCUIT IS NOT USED.

21. SLIDE 21 EXPLAIN PARALLEL CIRCUITS
22. SLIDE 22 EXPLAIN: KIRCHHOFF’S CURRENT LAW
23. SLIDE 23 EXPLAIN Figure 25-11 amount of current flowing into junction point A equals the total amount of current flowing out of the junction

DEMONSTRATION: BUILD PARALLEL CIRCUIT IN FIGURE 25-11. SHOW WHAT HAPPENS WHEN 1 BULB IS REMOVED. ASK THEM TO COMPARE THIS CIRCUIT WITH SERIES CIRCUIT. CONSTRUCT SERIES & PARALLEL CIRCUIT, EACH WITH 3 IDENTICAL BULBS. MEASURE TOTAL RESISTANCE IN EACH CIRCUIT. ASK: HOW DO PARALLEL CIRCUITS COMPARE TO SERIES CIRCUITS?

24. SLIDE 24 EXPLAIN: PARALLEL CIRCUIT LAWS
25. SLIDE 25 EXPLAIN Figure 25-12 current in a parallel circuit splits (divides) according to resistance in each branch
26. SLIDE 26: EXPLAIN DETERMINING TOTAL RESISTANCE IN PARALLEL CIRCUIT
27. SLIDES 27-29 EXPLAIN DETERMINING TOTAL RESISTANCE IN PARALLEL CIRCUIT
28. SLIDE 30 EXPLAIN Figure 25-13 In a typical parallel circuit, each resistance has power and ground and each leg operates independently of other legs of circuit

DEMO BUILD FIGURE 25-13: SHOW HOW TO SOLVE FOR TOTAL CIRCUIT CURRENT USING METHOD ONE. CHANGE VALUES AND HAVE STUDENTS SOLVE FOR CURRENT FLOW

31. SLIDE 31 EXPLAIN Figure 25-14 Schematic showing 2 resistors in parallel connected to 12-volt battery.
DEMONSTRATE BUILDING PARALLEL CIRCUITS, USING FIGURES: 25-13, 25-14, & 25-15

BUILD FIGURE 25-14: CALCULATE RESISTANCE OF FIGURE 25-14 USING. CHANGE VALUES & HAVE STUDENTS SOLVE FOR RESISTANCE.

32. SLIDE 32 EXPLAIN Figure 25-15 parallel circuit with three resistors connected to a 12-volt battery.

BUILD FIGURE 25-15: CALCULATE RESISTANCE OF FIGURE 25-15. CHANGE VALUES & HAVE STUDENTS SOLVE FOR RESISTANCE.

33. SLIDE 33 EXPLAIN Figure 25-16 Using an electronic calculator to determine total resistance of parallel circuit.

DEMONSTRATION: SHOW STUDENTS HOW TO SOLVE PROBLEM IN FIGURE 25–16 USING CALCULATOR. HAVE STUDENTS WORK WITH YOU AS YOU SOLVE PROBLEM

HANDS-ON TASK: STUDENTS WORK IN TEAMS & USE CALCULATOR TO SOLVE PARALLEL CIRCUIT PROBLEMS USING FIGURE 25-16

34. SLIDE 34 EXPLAIN Figure 25-17 Another example of how to use an electronic calculator to determine the total resistance of a parallel circuit. The answer is 13.45 ohms. Notice that the effective resistance of this circuit is less than the resistance of the lowest branch (20 ohms)

35. SLIDE 35 EXPLAIN Figure 25-18 A parallel circuit containing four 12-ohm resistors. When a circuit has more than one resistor of equal value, the total resistance can be determined by simply dividing the value of the resistance (12 ohms in this example) by the number of equal-value resistors (4 in this example) to get 3 ohms

DISCUSSION: ASK STUDENTS TO TALK ABOUT METHODS FOR SOLVING PARALLEL CIRCUIT PROBLEMS. WHICH METHOD IS EASIEST TO USE?
36. SLIDE 36 EXPLAIN Figure 25-19 Example 1.
37. SLIDE 37 EXPLAIN Figure 25-20 Example 2.
38. SLIDE 38 EXPLAIN Figure 25-21 Example 3.
39. SLIDE 39 EXPLAIN Figure 25-22 Example 4.

TASK: BUILD THE PARALLEL CIRCUITS IN FIGURES 25-19, 25-20, 25-21, & 25-22. DETERMINE WHAT THEY ARE TO SOLVE FOR.

DISCUSSION: ASK STUDENTS TO TALK ABOUT VOLTAGE IN PARALLEL CIRCUITS. IS VOLTAGE ALWAYS 12 VOLTS? EXPLAIN THAT THE VOLTAGE IN AUTOMOTIVE APPLICATIONS OF PARALLEL CIRCUITS USUALLY IS 12 VOLTS, BUT THAT THE SAME RULES WOULD APPLY IF VOLTAGE WERE 20, 30, OR 50 VOLTS OR MORE.

COMPLETE PARALLEL CIRCUIT WORKSHEETS 1, 2, & 3 TASK SHEET ON ELECTRICAL CIRCUITS

HOMEWORK: (2 HOURS OUTSIDE WORK): CHANGE VALUES FOR FIGURES 25–16 & 25–17 AND HAVE THE STUDENTS SOLVE FOR RESISTANCE. GRADE STUDENTS ON THEIR UNDERSTANDING OF CIRCUITS AND METHODS FOR SOLVING THE PROBLEMS, AS WELL AS ACCURATE CALCULATIONS.

40. SLIDES 40-42 EXPLAIN SERIES-PARALLEL CIRCUITS
43. SLIDE 43 EXPLAIN Figure 25-23 series-parallel circuit.
44. SLIDE 44 EXPLAIN Figure 25-24 complete headlight circuit with all bulbs & switches is series-parallel circuit.

DISCUSSION: DISCUSS 3 USE OF SERIES-PARALLEL CIRCUITS IN AUTOMOTIVE WIRING SYSTEMS. WHAT ARE SERIES CONNECTIONS AND WHAT ARE THE PARALLEL CONNECTIONS FOR HEADLIGHT SWITCH?

DEMONSTRATION: BUILD SERIES-PARALLEL CIRCUITS ON PROJECT BOARD IN FIGURES 25-26 & 25-27 & SHOW STUDENTS HOW TO SOLVE THE PROBLEMS
<table>
<thead>
<tr>
<th>Slides</th>
<th>Explanation</th>
<th>Figure</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>SLIDE 47 EXPLAIN Figure 25-25</td>
<td></td>
<td>Example 1.</td>
</tr>
<tr>
<td>48</td>
<td>SLIDE 48 EXPLAIN Figure 25-26</td>
<td></td>
<td>Example 2.</td>
</tr>
<tr>
<td>49</td>
<td>SLIDE 49 EXPLAIN Figure 25-27</td>
<td></td>
<td>Example 3.</td>
</tr>
<tr>
<td>50</td>
<td>SLIDE 50 EXPLAIN Figure 25-28</td>
<td></td>
<td>Example 4.</td>
</tr>
<tr>
<td>51</td>
<td>SLIDE 51 EXPLAIN Figure 25-29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRAINER TASK: BUILD SERIES-PARALLEL CIRCUITS IN FIGURES 25-28 & 25-29

COMPLETE SERIES-PARALLEL CIRCUIT WORKSHEETS 1, 2, & 3 TASK SHEET

HOMEWORK: SEARCH INTERNET HAVE STUDENTS USE INTERNET TO RESEARCH WIRING DIAGRAMS. ASK THEM TO DOWNLOAD AT LEAST 2 WIRING DIAGRAMS TO COMPARE AND CONTRAST.